
Math 541: Statistical Theory II

Methods of Evaluating Estimators

Instructor: Songfeng Zheng

Let X1, X2, · · · , Xn be n i.i.d. random variables, i.e., a random sample from f(x|θ), where θ
is unknown. An estimator of θ is a function of (only) the n random variables, i.e., a statistic
θ̂ = r(X1, · · · , Xn). There are several method to obtain an estimator for θ, such as the MLE,
method of moment, and Bayesian method.

A difficulty that arises is that since we can usually apply more than one of these methods
in a particular situation, we are often face with the task of choosing between estimators. Of
course, it is possible that different methods of finding estimators will yield the same answer
(as we have see in the MLE handout), which makes the evaluation a bit easier, but, in many
cases, different methods will lead to different estimators. We need, therefore, some criteria
to choose among them.

We will study several measures of the quality of an estimator, so that we can choose the
best. Some of these measures tell us the quality of the estimator with small samples, while
other measures tell us the quality of the estimator with large samples. The latter are also
known as asymptotic properties of estimators.

1 Mean Square Error (MSE) of an Estimator

Let θ̂ be the estimator of the unknown parameter θ from the random sample X1, X2, · · · , Xn.
Then clearly the deviation from θ̂ to the true value of θ, |θ̂ − θ|, measures the quality of
the estimator, or equivalently, we can use (θ̂ − θ)2 for the ease of computation. Since θ̂ is a
random variable, we should take average to evaluation the quality of the estimator. Thus,
we introduce the following

Definition: The mean square error (MSE) of an estimator θ̂ of a parameter θ is the function
of θ defined by E(θ̂ − θ)2, and this is denoted as MSEθ̂.

This is also called the risk function of an estimator, with (θ̂ − θ)2 called the quadratic loss
function. The expectation is with respect to the random variables X1, · · · , Xn since they are
the only random components in the expression.

Notice that the MSE measures the average squared difference between the estimator θ̂ and
the parameter θ, a somewhat reasonable measure of performance for an estimator. In general,
any increasing function of the absolute distance |θ̂− θ| would serve to measure the goodness
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of an estimator (mean absolute error, E(|θ̂ − θ|), is a reasonable alternative. But MSE has
at least two advantages over other distance measures: First, it is analytically tractable and,
secondly, it has the interpretation

MSEθ̂ = E(θ̂ − θ)2 = V ar(θ̂) + (E(θ̂)− θ)2 = V ar(θ̂) + (Bias of θ̂)2

This is so because

E(θ̂ − θ)2 = E(θ̂2) + E(θ2)− 2θE(θ̂)

= V ar(θ̂) + [E(θ̂)]2 + θ2 − 2θE(θ̂)

= V ar(θ̂) + [E(θ̂)− θ]2

Definition: The bias of an estimator θ̂ of a parameter θ is the difference between the
expected value of θ̂ and θ; that is, Bias(θ̂) = E(θ̂)−θ. An estimator whose bias is identically
equal to 0 is called unbiased estimator and satisfies E(θ̂) = θ for all θ.

Thus, MSE has two components, one measures the variability of the estimator (precision)
and the other measures the its bias (accuracy). An estimator that has good MSE properties
has small combined variance and bias. To find an estimator with good MSE properties, we
need to find estimators that control both variance and bias.

For an unbiased estimator θ̂, we have

MSEθ̂ = E(θ̂ − θ)2 = V ar(θ̂)

and so, if an estimator is unbiased, its MSE is equal to its variance.

Example 1: Suppose X1, X2, · · · , Xn are i.i.d. random variables with density function
f(x|σ) = 1

2σ
exp

(
− |x|

σ

)
, the maximum likelihood estimator for σ

σ̂ =

∑n
i=1 |Xi|

n

is unbiased.

Solution: Let us first calculate E(|X|) and E(|X|2) as

E(|X|) =
∫ ∞

−∞
|x|f(x|σ)dx =

∫ ∞

−∞
|x| 1

2σ
exp

(
−|x|

σ

)
dx

= σ
∫ ∞

0

x

σ
exp

(
−x

σ

)
d
x

σ
= σ

∫ ∞

0
ye−ydy = σΓ(2) = σ

and

E(|X|2) =
∫ ∞

−∞
|x|2f(x|σ)dx =

∫ ∞

−∞
|x|2 1

2σ
exp

(
−|x|

σ

)
dx

= σ2
∫ ∞

0

x2

σ2
exp

(
−x

σ

)
d
x

σ
= σ2

∫ ∞

0
y2e−ydy = σΓ(3) = 2σ2
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Therefore,

E(σ̂) = E

( |X1|+ · · ·+ |Xn|
n

)
=

E(|X1|) + · · ·+ E(|Xn|)
n

= σ

So σ̂ is an unbiased estimator for σ.

Thus the MSE of σ̂ is equal to its variance, i.e.

MSEσ̂ = E(σ̂ − σ)2 = V ar(σ̂) = V ar

( |X1|+ · · ·+ |Xn|
n

)

=
V ar(|X1|) + · · ·+ V ar(|Xn|)

n2
=

V ar(|X|)
n

=
E(|X|2)− (E(|X|))2

n
=

2σ2 − σ2

n
=

σ2

n

The Statistic S2: Recall that if X1, · · · , Xn come from a normal distribution with variance
σ2, then the sample variance S2 is defined as

S2 =

∑n
i=1(Xi − X̄)2

n− 1

It can be shown that (n−1)S2

σ2 ∼ χ2
n−1. From the properties of χ2 distribution, we have

E

[
(n− 1)S2

σ2

]
= n− 1 ⇒ E(S2) = σ2

and

V ar

[
(n− 1)S2

σ2

]
= 2(n− 1) ⇒ V ar(S2) =

2σ4

n− 1

Example 2: Let X1, X2, · · · , Xn be i.i.d. from N(µ, σ2) with expected value µ and variance
σ2, then X̄ is an unbiased estimator for µ, and S2 is an unbiased estimator for σ2.

Solution: We have

E(X̄) = E
(

X1 + · · ·+ Xn

n

)
=

E(X1) + · · ·+ E(Xn)

n
= µ

Therefore, X̄ is an unbiased estimator. The MSE of X̄ is

MSEX̄ = E(X̄ − µ)2 = V ar(X̄) =
σ2

n

This is because

V ar(X̄) = V ar
(

X1 + · · ·+ Xn

n

)
=

V ar(X1) + · · ·+ V ar(Xn)

n2
=

σ2

n
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Similarly, as we showed above, E(S2) = σ2, S2 is an unbiased estimator for σ2, and the MSE
of S2 is given by

MSES2 = E(S2 − σ2) = V ar(S2) =
2σ4

n− 1
.

Although many unbiased estimators are also reasonable from the standpoint of MSE, be
aware that controlling bias does not guarantee that MSE is controlled. In particular, it is
sometimes the case that a trade-off occurs between variance and bias in such a way that
a small increase in bias can be traded for a larger decrease in variance, resulting in an
improvement in MSE.

Example 3: An alternative estimator for σ2 of a normal population is the maximum likeli-
hood or method of moment estimator

σ̂2 =
1

n

n∑

i=1

(Xi − X̄)2 =
n− 1

n
S2

It is straightforward to calculate

E(σ̂2) = E
(

n− 1

n
S2

)
=

n− 1

n
σ2

so σ̂2 is a biased estimator for σ2. The variance of σ̂2 can also be calculated as

V ar(σ̂2) = V ar
(

n− 1

n
S2

)
=

(n− 1)2

n2
V ar(S2) =

(n− 1)2

n2

2σ4

n− 1
=

2(n− 1)σ4

n2
.

Hence the MSE of σ̂2 is given by

E(σ̂2 − σ2)2 = V ar(σ̂2) + (Bias)2

=
2(n− 1)σ4

n2
+

(
n− 1

n
σ2 − σ2

)2

=
2n− 1

n2
σ4

We thus have (using the conclusion from Example 2)

MSE
σ̂2 =

2n− 1

n2
σ4 <

2n

n2
σ4 =

2σ4

n
<

2σ4

n− 1
= MSES2 .

This shows that σ̂2 has smaller MSE than S2. Thus, by trading off variance for bias, the
MSE is improved.

The above example does not imply that S2 should be abandoned as an estimator of σ2. The
above argument shows that, on average, σ̂2 will be closer to σ2 than S2 if MSE is used as a
measure. However, σ̂2 is biased and will, on the average, underestimate σ2. This fact alone
may make us uncomfortable about using σ̂2 as an estimator for σ2.

In general, since MSE is a function of the parameter, there will not be one “best” estimator
in terms of MSE. Often, the MSE of two estimators will cross each other, that is, for some
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parameter values, one is better, for other values, the other is better. However, even this
partial information can sometimes provide guidelines for choosing between estimators.

One way to make the problem of finding a “best” estimator tractable is to limit the class of
estimators. A popular way of restricting the class of estimators, is to consider only unbiased
estimators and choose the estimator with the lowest variance.

If θ̂1 and θ̂2 are both unbiased estimators of a parameter θ, that is, E(θ̂1) = θ and E(θ̂2) = θ,
then their mean squared errors are equal to their variances, so we should choose the estimator
with the smallest variance.

A property of Unbiased estimator: Suppose both A and B are unbiased estimator for
an unknown parameter θ, then the linear combination of A and B: W = aA + (1− a)B, for
any a is also an unbiased estimator.

Example 4: This problem is connected with the estimation of the variance of a normal
distribution with unknown mean from a sample X1, X2, · · · , Xn of i.i.d. normal random
variables. For what value of ρ does ρ

∑n
i=1(Xi − X̄)2 have the minimal MSE?

Please note that if ρ = 1
n−1

, we get S2 in example 2; when ρ = 1
n
, we get σ̂2 in example 3.

Solution:

As in above examples, we define

S2 =

∑n
i=1(Xi − X̄)2

n− 1

Then,

E(S2) = σ2 and Var(S2) =
2σ4

n− 1

Let

eρ = ρ
n∑

i=1

(Xi − X̄)2 = ρ(n− 1)S2

and let t = ρ(n− 1) Then

E(eρ) = ρ(n− 1)E(S2) = ρ(n− 1)σ2 = tσ2

and

V ar(eρ) = ρ2(n− 1)2V ar(S2) =
2t2

n− 1
σ4

We can Calculate the MSE of eρ as

MSE(eρ) = V ar(eρ) + [Bias]2 = V ar(eρ) +
[
E(eρ)− σ2

]2

= V ar(eρ) + (tσ2 − σ2)2 = V ar(eρ) + (t− 1)2σ4.
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Plug in the results before, we have

MSE(eρ) =
2t2

n− 1
σ4 + (t− 1)2σ4 = f(t)σ4

where

f(t) =
2t2

n− 1
+ (t− 1)2 =

(
n + 1

n− 1
t2 − 2t + 1

)

when t = n−1
n+1

, f(t) achieves its minimal value, which is 2
n+1

. That is the minimal value of

MSE(eρ) = 2σ4

n+1
, with (n− 1)ρ = t = n−1

n+1
, i.e. ρ = 1

n+1
.

From the conclusion in example 3, we have

MSE
σ̂2 =

2n− 1

n2
σ4 <

2σ4

n− 1
= MSES2 .

It is straightforward to verify that

MSE
σ̂2 =

2n− 1

n2
σ4 ≥ 2σ4

n + 1
= MSE(eρ)

when ρ = 1
n+1

.

2 Efficiency of an Estimator

As we pointed out earlier, Fisher information can be used to bound the variance of an
estimator. In this section, we will define some quantity measures for an estimator using
Fisher information.

2.1 Efficient Estimator

Suppose θ̂ = r(X1, · · · , Xn) is an estimator for θ, and suppose E(θ̂) = m(θ), a function of θ,
then T is an unbiased estimator of m(θ). By information inequality,

Var(θ̂) ≥ [m′(θ)]2

nI(θ)

when the equality holds, the estimator θ̂ is said to be an efficient estimator of its expectation
m(θ). Of course, if m(θ) = θ, then T is an unbiased estimator for θ.

Example 5: Suppose that X1, · · · , Xn form a random sample from a Bernoulli distribution
for which the parameter p is unknown. Show that X̄ is an efficient estimator of p.
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Proof: If X1, · · · , Xn ∼ Bernoulli(p), then E(X̄) = p, and Var(X̄) = p(1−p)/n. By example
3 from the fisher information lecture note, the fisher information is I(p) = 1/[p(1 − p)].
Therefore the variance of X̄ is equal to the lower bound 1/[nI(p)] provided by the information
inequality, and X̄ is an efficient estimator of p.

Recall that in the proof of information inequality, we used the Cauchy-Schwartz inequality,

{
Covθ[θ̂, l

′
n(X|θ)]

}2 ≤ Varθ[θ̂]Varθ[l
′
n(X|θ)].

From the proof procedure, we know that if the equality holds in Cauchy-Schwartz inequality,
then the equality will hold in information inequality. We know that if and only if there
is a linear relation between θ̂ and l′n(X|θ), the Cauchy-Schwartz inequality will become an
equality, and hence the information inequality will become an equality. In other words, θ̂
will be an efficient estimator if and only if there exist functions u(θ) and v(θ) such that

θ̂ = u(θ)l′n(X|θ) + v(θ).

The functions u(θ) and v(θ) may depend on θ but not depend on the observations X1, · · · , Xn.

Because θ̂ is an estimator, it cannot involve the parameter θ. Therefore, in order for θ̂ to
be efficient, it must be possible to find functions u(θ) and v(θ) such that the parameter θ
will actually be canceled from the right side of the above equation, and the value of θ̂ will
depend on the observations X1, · · · , Xn and not on θ.

Example 6: Suppose that X1, · · · , Xn form a random sample from a Poisson distribution
for which the parameter θ is unknown. Show that X̄ is an efficient estimator of θ.

Proof: The joint p.m.f. of X1, · · · , Xn is

fn(x|θ) =
n∏

i=1

f(xi|θ) =
e−nθθnx̄

∏n
i=1 xi!

.

Then

ln(X|θ) = −nθ + nX̄ log θ −
n∑

i=1

log(Xi!),

and

l′n(X|θ) = −n +
nX̄

θ
.

If we now let u(θ) = θ/n and v(θ) = θ, then

X̄ = u(θ)l′n(X|θ) + v(θ).

Since the statistic X̄ has been represented as a linear function of l′n(X|θ), it follows that X̄
will be an efficient estimator of its expectation θ. In other words, the variance of X̄ will
attain the lower bound given by the information inequality.
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Suppose θ̂ is an efficient estimator for its expectation E(θ̂) = m(θ). Let a statistic T be a
linear function of θ̂, i.e. T = aθ̂ + b, where a and b are constants. Then T is an efficient
estimator for E(T ), i.e., a linear function of an efficient estimator is an efficient estimator
for its expectation.

Proof: We can see that E(T ) = aE(θ̂) + b = am(θ) + b, by information inequality

Var(T ) ≥ a2[m′(θ)]2

nI(θ)
.

We also have

Var(T ) = Var(aθ̂ + b) = a2Var(θ̂) = a2 [m′(θ)]2

nI(θ)
,

since θ̂ is an efficient estimator for m(θ), Var(θ̂) attains its lower bound. Our computation
shows that the variance of T can attain its lower bound, which implies that T is an efficient
estimator for E(T ).

Now, let us consider the exponential family distribution

f(x|θ) = exp[c(θ)T (x) + d(θ) + S(x)],

and we suppose there is a random sample X1, · · · , Xn from this distribution. We will show
that the sufficient statistic

∑n
i=1 T (Xi) is an efficient estimator of its expectation.

Clearly,

ln(X|θ) =
n∑

i=1

log f(Xi|θ) =
n∑

i=1

[c(θ)T (Xi) + d(θ) + S(Xi)] = c(θ)
n∑

i=1

T (Xi)+nd(θ)+
n∑

i=1

S(Xi),

and

l′n(X|θ) = c′(θ)
n∑

i=1

T (Xi) + nd′(θ).

Therefore, there is a linear relation between
∑n

i=1 T (Xi) and l′n(X|θ):
n∑

i=1

T (Xi) =
1

c′(θ)
l′n(X|θ)− nd′(θ)

c′(θ)
.

Thus, the sufficient statistic
∑n

i=1 T (Xi) is an efficient estimator of its expectation. Any linear
function of

∑n
i=1 T (Xi) is a sufficient statistic and is an efficient estimator of its expectation.

Specifically, if the MLE of θ is a linear function of sufficient statistic, then MLE is efficient
estimator of θ.

Example 7. Suppose that X1, · · · , Xn form a random sample from a normal distribution for
which the mean µ is known and the variance σ2 is unknown. Construct an efficient estimator
for σ2.
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Solution: Let θ = σ2 be the unknown variance. Then the p.d.f. is

f(x|θ) =
1√
2πθ

exp
{
− 1

2θ
(x− µ)2

}
,

which can be recognized as a member of exponential family with T (x) = (x − µ)2. So∑n
i=1(Xi − µ)2 is an efficient estimator for its expectation. Since E[(Xi − µ)2] = σ2,

E[
∑n

i=1(Xi − µ)2] = nσ2. Therefore,
∑n

i=1(Xi − µ)2/n is an efficient estimator for σ2.

2.2 Efficiency and Relative Efficiency

For an estimator θ̂, if E(θ̂) = m(θ), then the ratio between the CR lower bound and Var(θ̂)
is called the efficiency of the estimator θ̂, denoted as e(θ̂), i.e.

e(θ̂) =
[m′(θ)]2/[nI(θ)]

Var(θ̂)
.

By the information inequality, we have e(θ̂) ≤ 1 for any estimator θ̂.

Note: some textbooks or materials define efficient estimator and efficiency of an estimator
only for unbiased estimator, which is a special case of m(θ) = θ in our definitions.

If an estimator is unbiased and and its variance attains the Cramér-Rao lower bound, then
it is called the minimum variance unbiased estimator (MVUE).

To evaluate an estimator θ̂, we defined the mean squared error as

MSE(θ̂) = Var(θ̂) + (E(θ̂)− θ)2

If the estimator is unbiased, then MSE(θ̂) = Var(θ̂). When two estimators are both unbiased,
comparison of their MSEs reduces to comparison of their variances.

Given two unbiased estimators, θ̂ and θ̃, of a parameter θ, the relative efficiency of θ̂
relative to θ̃ is defined as

eff(θ̂, θ̃) =
Var(θ̃)

Var(θ̂)
.

Thus, if the efficiency is smaller than 1, θ̂ has a larger variance than θ̃ has. This comparison
is most meaningful when both θ̂ and θ̃ are unbiased or when both have the same bias.
Frequently, the variances of θ̂ and θ̃ are of the form

var(θ̂) =
c1

n
and var(θ̃) =

c2

n

where n is the sample size. If this is the case, the efficiency can be interpreted as the ratio
of sample sizes necessary to obtain the same variance for both θ̂ and θ̃.
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Example 8: Let Y1, · · · , Yn denote a random sample from the uniform distribution on the
interval (0, θ). Consider two estimators,

θ̂1 = 2Ȳ and θ̂2 =
n + 1

n
Y(n),

where Y(n) = max(Y1, · · · , Yn). Find the efficiency of θ̂1 relative to θ̂2.

Solution: Because each Yi follows a uniform distribution on the interval (0, θ), µ = E(Yi) =
θ/2, and σ2 = Var(Yi) = θ2/12. Therefore,

E(θ̂1) = E(2Ȳ ) = 2E(Ȳ ) = 2µ = θ,

so θ̂1 is unbiased. Furthermore

Var(θ̂1) = Var(2Ȳ ) = 4Var(Ȳ ) = 4
σ2

n
=

θ2

3n
.

To find the mean and variance of θ̂2, recall that the density function of Y(n) is given by

g(n)(y) = n[FY (y)]n−1fY (y) =





n
(

y
θ

)n−1
1
θ

for 0 ≤ y ≤ θ

0 otherwise

Thus,

E(Y(n)) =
n

θn

∫ θ

0
yndy =

n

n + 1
θ,

it follows that E(θ̂2) = E{[(n + 1)/n]Y(n)} = θ, i.e. θ̂2 is an unbiased estimator for θ.

E(Y 2
(n)) =

n

θn

∫ θ

0
yn+1dy =

n

n + 2
θ2,

therefore, the variance of Y(n) is

Var(Y(n)) = E(Y 2
(n))− E(Y(n))

2 =
n

n + 2
θ2 −

(
n

n + 1
θ
)2

.

Thus,

Var(θ̂2) = Var
(

n + 1

n
Y(n)

)
=

(
n + 1

n

)2
[

n

n + 2
θ2 −

(
n

n + 1
θ
)2

]
=

θ2

n(n + 2)
.

Finally, the efficiency of θ̂1 relative to θ̂2 is given by

eff(θ̂1, θ̂2) =
Var(θ̂2)

Var(θ̂1)
=

θ2/[n(n + 2)]

θ2/(3n)
=

3

n + 2
.
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3 Exercises

Exercise 1. X, the cosine of the angle at which electrons are emitted in muon decay has a
density

f(x) =
1 + αX

2
− 1 ≤ x ≤ 1 − 1 ≤ α ≤ 1

The parameter α is related to polarization. Show that E(X) = α
3
. Consider an estimator

for the parameter α, α̂ = 3X̄. Computer the variance, the bias, and the mean square error
of this estimator.

Exercise 2. Suppose that X1, · · · , Xn form a random sample from a normal distribution
for which the mean µ is unknown and the variance σ2 is known. Show that X̄ is an efficient
estimator of µ.

Exercise 3. Suppose that X1, · · · , Xn form a random sample of size n from a Poisson
distribution with mean λ. Consider λ̂1 = (X1 + X2)/2 and λ̂2 = X̄. Find the efficiency of
λ̂1 relative to λ̂2.

Exercise 4. Suppose that Y1, · · · , Yn denote a random sample of size n form an exponential
distribution with density function given by

f(y) =

{
1
θ
e−y/θ fory > 0

0 otherwise

Consider two estimators θ̂1 = nY(1), and θ̂2 = Ȳ , where Y(1) = min(Y1, · · · , Yn). Please show

that both θ̂1 and θ̂2 are unbiased estimator of θ, find their MSE, and find the efficiency of
θ̂1 relative to θ̂2.


